Abstract

The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis–related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed—likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.