Abstract
We present a perturbative approach to the study of the Hofstadter model for when the amount of flux per plaquette is close to a rational fraction. Within this approximation certain eigenstates of the system are shown to be multi-component wavefunctions that connect smoothly to the Landau levels of the continuum. The perturbative corrections to these are higher Landau level contributions that break rotational invariance and allow the perturbed states to adopt the symmetry of the lattice. In the presence of interactions, this approach allows for the calculation of generalised Haldane pseudopotentials, and in turn, the many-body properties of the system. The method is sufficiently general that it can apply to a wide variety of lattices, interactions and magnetic field strengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.