Abstract
After a discussion of the problems associated with the non-relativistic limit of the Dirac equation and of the expansion of the exact eigenvalues and eigenfunctions of the H atom in powers ofc−2 the traditional approaches for a perturbation theory of relativistic effects are critically reviewed. Then a direct perturbation theory is presented, that is characterized by a change of the metric in 4-component spinor space such that the Levy-Leblond equation appears as the straightforward non-relativistic limit of the Dirac equation. The various orders in perturbation theory of the energy and the wave function are derived first in a direct way, then in a resolvent formalism. The formulas are very compact and easily generalizeable to arbitrary order. All integrals that arise to any order exist, and no controlled cancellation of divergent terms (as in other approaches) is necessary. In the same philosophy an iterative approach towards the solution of the Dirac equation is derived, in which the solution of the Schrodinger equation is the first iteration step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift f�r Physik D Atoms, Molecules and Clusters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.