Abstract

Abstract To examine perturbation effects of formate pathway on hydrogen productivity in Enterobacter aerogenes (Ea), formate dehydrogenase FDH-H gene (fdhF) and formate hydrogen lyase activator protein FHLA gene (fhlA) originated from Escherichia coli, were overexpressed in the wild strain Ea, its hycA-deleted mutant (A) by knockout the formate hydrogen lyase repressor and hybO-deleted mutant (O) by knockout of the uptake hydrogenase, respectively. Overexpression of fdhF and fhlA promoted cell growth and volumetric hydrogen production rates of all the strains, and the hydrogen production per gram cell dry weight (CDW) for Ea, A and O was increased by 38.5%, 21.8% and 5.25%, respectively. The fdhF and fhlA overexpression improved the hydrogen yield per mol glucose of strains Ea and A, but declined that of strain O. The increase of hydrogen yield of the strain Ea with fdhF and fhlA expression was mainly attributed to the increase of formate pathway, while for the mutant A, the improved hydrogen yield with fdhF and fhlA expression was mainly due to the increase of NADH pathway. Analysis of the metabolites and ratio of ethanol-to-acetate showed that the cellular redox state balance and energy level were also changed for these strains by fdhF and fhlA expression. These findings demonstrated that the hydrogen production was not only dependent on the hydrogenase genes, but was also affected by the regulation of the whole metabolism. Therefore, fdhF and fhlA expression in different strains of E. aerogenes could exhibit different perturbation effects on the metabolism and the hydrogen productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.