Abstract

Perturbation growth in uncertain systems is examined and related to previous work in which linear stability concepts were generalized from a perspective based on the nonnormality of the underlying linear operator. In this previous work the linear operator, subject to an initial perturbation or a stochastic forcing distributed in time, was either fixed or time varying, but in either case the operator was certain. However, in forecast and climate studies, complete knowledge of the dynamical system being perturbed is generally lacking; nevertheless, it is often the case that statistical properties characterizing the variability of the dynamical system are known. In the present work generalized stability theory is extended to such uncertain systems. The limits in which fluctuations about the mean of the operator are correlated over time intervals, short and long, compared to the timescale of the mean operator are examined and compared with the physically important transitional case of operator fluctuation on timescales comparable to the timescales of the mean operator. Exact and asymptotically valid equations for transient ensemble mean and moment growth in uncertain systems are derived and solved. In addition, exact and asymptotically valid equations for the ensemble mean response of a stable uncertain system to deterministic forcing are derived and solved. The ensemble mean response of the forced stable uncertain system obtained from this analysis is interpreted under the ergodic assumption as equal to the time mean of the state of the uncertain system as recorded by an averaging instrument. Optimal perturbations are obtained for the ensemble mean of an uncertain system in the case of harmonic forcing. Finally, it is shown that the remarkable systematic increase in asymptotic growth rate with moment in uncertain systems occurs only in the context of the ensemble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call