Abstract

Currently, selenium (Se)-based compound semiconductors (CISe, CIGSe and CZTSe) are considered as the active materials in the photovoltaic world. However, these materials exhibit couple of issues related to stoichiometry maintenance and scarcity of their constituent elements (In, Ga), which limit their massive production for future energy demands. These issues could be rectified by introducing a non-toxic, inexpensive and earth-abundant binary material. One such material is a tin monoselenide (SnSe), which exhibits a high chemical stability along with attractive physical properties namely, suitable band gap (1.3 eV), high absorption coefficient (105 cm−1) and p-type conductivity. These properties indicate SnSe as a competitive substitute in place of conventional absorbers in thin film solar cells. Despite of its remarkable properties, only a few reports were published on the fabrication of SnSe-based solar cells with poor efficiency (≤1 %). This indicates a need to review on the physical properties of SnSe and its device structures in a deeper sense. In this context, the present review describes the different methods of preparation of SnSe films and their physical properties along with the details of photovoltaic device fabrication. We highlighted the different factors that are limiting the efficiency of SnSe solar cells, and a few suggestions were included to overcome these problems for further improvement of these cells. This review will enrich and stimulate the readers to further investigate the growth of SnSe thin films and their devices, for the development of >20 % efficient SnSe solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call