Abstract

Edge fracture is a viscoelastic instability characterized by the sudden indentation of a fluid’s free surface when the fluid is subjected to a high enough shear rate. During shear rheometry, the fracture can invade the fluid sample, decreasing its contact area with the rheometer fixture and rendering the measurement of viscosity and normal stresses at high-shear rates invalid. Edge fracture can also induce apparent shear banding in the fluid, complicating the interpretation of experimental results. Over the past several decades, empirical and theoretical research has unraveled the physics underlying edge fracture. The knowledge obtained has allowed rheologists to develop techniques to minimize the adverse effect of fracture in their experiments. In recent years, edge fracture has also been used to break up viscoelastic liquid bridges quickly and cleanly, showing its potential to be adapted to the design of functional dispensing nozzles. This Perspective article aims to give a historical overview of edge fracture and suggests research directions to develop methods for suppressing or harnessing the phenomenon to benefit applications of both fundamental and technological importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call