Abstract
With the development of society, online reviews are increasingly becoming a crucial factor in decision-making. Especially for entertainment products such as movies, they are preferred for their affordability and high entertainment factor. Therefore, this paper proposes a movie recommendation model that considers user personalization using a probabilistic linguistic approach based on online reviews. Firstly, the method constructs a quantitative sentiment framework that transforms comments into a multi-granular probabilistic sentiment language. Secondly, we build the decision-making trial and evaluation laboratory (DEMATEL) method for probabilistic linguistic environments to explore interrelationships between product attributes, and improve the distance measure and score function to better integrate probabilistic linguistic information into DEMATEL weight calculations. Furthermore, to account for risk preferences, the model employs the extended TODIM (an acronym in Portuguese for interactive and multicriteria decision making) methodology to determine the ranking of alternatives. Finally, we design Douban movie ranking experiments to demonstrate the validity of the model. Compared with other methods, this paper incorporates the emotional tendency of movie attributes and user preference into the decision-making process leading to more reasonable results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.