Abstract

Biomaterials-based tissue engineering scaffolds play an essential role as an independent therapy or with the combination of cellular or biological active constituents in tissue regeneration applications. However, synthetic grafts, xenografts, and allografts are recognized as foreign materials in human body, resulting in suboptimal clinical outcomes. Recently, autologous materials from a patient's body have drawn great attention in clinical treatment and tissue engineering. Moreover, the autologous scaffolds equipped with the advantages of tissue-like hydrogels have great potential to become a highly versatile tool as personalized hydrogels (PHs) for applications in 3D cell culture and tissue engineering. PHs may feature excellent biocompatibility, tailorable mechanical properties, regenerative capability, non-rejection of grafts/transplants on immunological responses, and customizable properties which could be suitable to meet the personal and clinical care. Here, we present a scoping review of recent progress of PHs with a focus on detailed preparation methods, material properties, and tissue engineering applications along with their challenges and opportunities. It is expected that PHs will circumvent the limitations of current tissue engineering therapies and will be used as next-generation scaffolds for tissue engineering and translational research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call