Abstract
In practice, building heating, ventilation, and air conditioning (HVAC) systems are essentially set at nominal levels according to industry guidelines. However, several studies have demonstrated that this conventional practice is unlikely to meet the thermal requirements of occupants in a single or multi-occupancy space due to occupants' diverse preferences, activities and needs. To improve occupants' thermal comfort, this study develops and tests a smartphone application framework which is capable of dynamically determining the optimum room conditioning mode (mechanical conditioning or natural ventilation) and HVAC settings (thermostat setpoint) in single and multi-occupancy spaces. The “personalized” HVAC control framework integrates environment data (obtained from sensors) with human physiological and behavioral data (obtained from wearable devices, polling apps) in a smartphone application we developed for human-building interaction. In the operation phase, occupants' thermal preferences are continuously predicted using the personalized comfort models, developed from the training data through the Random Forest classifier, when determining the optimum HVAC control strategies. Two case studies are conducted to demonstrate the capabilities of the developed framework to improve thermal comfort in single and multi-occupancy spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.