Abstract
Using lower limb rehabilitation robots (LLRRs) to help stroke patients recover their walking ability is attracting more and more attention presently. Previous studies have shown that gait rehabilitation training with natural gait pattern can improve the therapeutic outputs. However, how to generate the personalized gait trajectory has not been well researched. In this paper, a personalized gait generation method based anthropometric features is proposed. Firstly, gait trajectories are fitted and simplified into Fourier coefficient vectors, which are used to represent gait trajectories. Secondly, fourteen body features are used to generate the personalized gait trajectories and the feature set is further optimized based on the minimal redundancy maximal relevance criterion for easy application on the LLRR. Then, the relationship between the optimized feature set and gait trajectories is modeled by using the RF algorithm. Finally, the performance of the proposed method is demonstrated by several comparison experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Ambient Intelligence and Humanized Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.