Abstract
Using lower limb rehabilitation robots to help stroke patients recover their walking ability is becoming more and more popular presently. The natural and personalized gait trajectories designed for robot assisted gait training are very important for improving the therapeutic results. Meanwhile, it has been proved that human gaits are closely related to anthropometric features, which however has not been well researched. Therefore, a method based on anthropometric features for prediction of patient-specific gait trajectories is proposed in this paper. Firstly, Fourier series are used to fit gait trajectories, hence, gait patterns can be represented by the obtained Fourier coefficients. Then, human age, gender and 12 body parameters are used to design the gait prediction model. For the purpose of easy application on lower limb rehabilitation robots, the anthropometric features are simplified by an optimization method based on the minimal-redundancy-maximal-relevance criterion. Moreover, the relationship between the simplified features and human gaits is modeled by using a random forest algorithm, based on which the patient-specific gait trajectories can be predicted. Finally, the performance of the designed gait prediction method is validated on a dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.