7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1504/ijeb.2005.006391
Copy DOIPublication Date: Jan 1, 2005 | |
Citations: 9 |
Most of the current personalised recommender systems use either collaborative filtering or data mining for offering recommendations. However, such methods are beset with problems of sparsity and scalability. In this paper, we present a System for Personalised REcommendations in E-commerce (SPREE) that combines the strengths of both collaborative filtering and data mining for providing better recommendations. We experimentally evaluate our system and show the benefits using a set of real and synthetic datasets. We also propose a novel similarity metric for efficiently computing collaborative users. Experimental results show that the proposed similarity metric is up to 12 orders of magnitude faster and has better predictive capabilities compared to other similarity metrics.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.