Abstract
This paper presents a comprehensive examination of the integration of artificial intelligence (AI) in science education and its impact on personalised learning. The research explores current applications, challenges, and future perspectives of AI technologies in educational settings. Through a systematic literature review, we identify the advantages of AI, such as enhanced individualised instruction, data-informed insights, and increased student engagement. The study combines quantitative and qualitative analyses, case studies, expert interviews, and technology assessments to offer a multidimensional understanding of AI's role in personalising science education. Despite the potential benefits, the research highlights barriers, including financial costs, infrastructure requirements, data privacy, and the need for teacher training. The future of AI in education suggests a trajectory towards advanced personalisation capabilities through adaptable learning systems, virtual tutors, and immersive learning environments. We underscore the importance of addressing the identified challenges to fully realise the transformative power of AI in science education. The findings illustrate that, with thoughtful implementation, AI holds promise for tailoring science learning experiences, making them more effective, inclusive, and engaging for students of varied needs and abilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.