Abstract

Human health has been intimately linked to the indoor environment, highlighting the relevance of indoor air quality (IAQ). Although various techniques have been developed to maintain the well-being of building residents/workers, a convergence between IAQ and personal inhalation exposure risk under realistic conditions has yet to be achieved due to the heterogeneous nature of contaminant transfer. In this regard, computational fluid dynamics (CFD) is a promising tool when analysing detailed three-dimensional flow and gas-phase contaminant transport in a building. From this viewpoint, this study performs a comprehensive inhalation exposure analysis in the working environment, integrating outdoor airflow to the indoor environment of a factory under cross-ventilation for an 8-hour occupational period, a factory worker in the form of a computer simulated person (CSP) and a semi-coupled virtual respiratory tract. A physiologically-based toxicokinetic (PBTK) model has been added to the respiratory tract to predict tissue dose distribution, i.e., inhalation exposure risk. Three cases were analysed to confirm the differences between maximum/minimum and time-averaged inhaled dose for a comprehensive source-to-dose study. Results confirmed the relevance of calculated personal inhalation exposure for an accurate time-averaged intake and the danger of acute exposures at given times of a working day.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.