Abstract
The goal of person reidentification (Re-ID) is to identify a given pedestrian from a network of nonoverlapping surveillance cameras. Most existing works follow the supervised learning paradigm which requires pairwise labeled training data for each pair of cameras. However, this limits their scalability to real-world applications where abundant unlabeled data are available. To address this issue, we propose a multi-feature fusion with adaptive graph learning model for unsupervised Re-ID. Our model aims to negotiate comprehensive assessment on the consistent graph structure of pedestrians with the help of special information of feature descriptors. Specifically, we incorporate multi-feature dictionary learning and adaptive multi-feature graph learning into a unified learning model such that the learned dictionaries are discriminative and the subsequent graph structure learning is accurate. An alternating optimization algorithm with proved convergence is developed to solve the final optimization objective. Extensive experiments on four benchmark data sets demonstrate the superiority and effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.