Abstract

Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding. However, the performance of GAEs is very dependent on the quality of the graph structure, i.e., of the adjacency matrix. In other words, GAEs would perform poorly when the adjacency matrix is incomplete or be disturbed. In this paper, two novel unsupervised graph embedding methods, unsupervised graph embedding via adaptive graph learning (BAGE) and unsupervised graph embedding via variational adaptive graph learning (VBAGE) are proposed. The proposed methods expand the application range of GAEs on graph embedding, i.e, on the general datasets without graph structure. Meanwhile, the adaptive learning mechanism can initialize the adjacency matrix without being affected by the parameter. Besides that, the latent representations are embedded with the Laplacian graph structure to preserve the topology structure of the graph in the vector space. Moreover, the adjacency matrix can be self-learned for better embedding performance when the original graph structure is incomplete. With adaptive learning, the proposed method is much more robust to the graph structure. Experimental studies on several datasets validate our design and demonstrate that our methods outperform baselines by a wide margin in node clustering, node classification, link prediction, and graph visualization tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.