Abstract
In many surveillance systems there is a requirement to determine whether a given person of interest has already been observed over a network of cameras. This is the person re-identification problem. The human appearance obtained in one camera is usually different from the ones obtained in another camera. In order to re-identify people the human signature should handle difference in illumination, pose and camera parameters. We propose a new appearance model based on spatial covariance regions extracted from human body parts. The new spatial pyramid scheme is applied to capture the correlation between human body parts in order to obtain a discriminative human signature. The human body parts are automatically detected using Histograms of Oriented Gradients (HOG). The method is evaluated using benchmark video sequences from i-LIDS Multiple-Camera Tracking Scenario data set. The re-identification performance is presented using the cumulative matching characteristic (CMC) curve. Finally, we show that the proposed approach outperforms state of the art methods.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have