Abstract
Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a non-uniform spatiotemporal precession pattern is observed. The kinetic theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba ($\alpha$) and the Dresselhaus ($\beta_3$) parameters. Corresponding calculations are further validated by an excitation-density dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.