Abstract

Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of network flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective flows (also called cyclic or chiral flows) over networks, particularly those that arise for irreversible Markov chains. As two applications, we study convection cycles arising under the PageRank algorithm and we investigate chiral edge flows for a stochastic model of a bimonomer's configuration dynamics. Our experiments highlight how system parameters-e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer-can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.