Abstract
Topology is the branch of mathematics that studies shapes and maps among them. From the algebraic definition of topology a new set of algorithms have been derived. These algorithms are identified with “computational topology” or often pointed out as Topological Data Analysis (TDA) and are used for investigating high-dimensional data in a quantitative manner. Persistent homology appears as a fundamental tool in Topological Data Analysis. It studies the evolution of \(k-\)dimensional holes along a sequence of simplicial complexes (i.e. a filtration). The set of intervals representing birth and death times of \(k-\)dimensional holes along such sequence is called the persistence barcode. \(k-\)dimensional holes with short lifetimes are informally considered to be topological noise, and those with a long lifetime are considered to be topological feature associated to the given data (i.e. the filtration). In this paper, we derive a simple method for separating topological noise from topological features using a novel measure for comparing persistence barcodes called persistent entropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.