Abstract

Knowledge of the dynamics of micronekton at seamounts is critical to understanding the ecological role of these ecosystems. Active acoustic techniques are an effective tool to monitor the distribution and movements of pelagic organisms. We carried out several day- and nighttime active acoustic surveys over a 3-year period (2009-2011) to characterize the spatial and temporal distribution of micronekton backscatter on two seamounts (Condor and Gigante) in the Azores and in the surrounding open-waters. The highest mean volume backscattering strength (MVBS) was consistently found in the water column over the seamount summits, regardless of the season and diel period. MVBS over the summits was 14 to 26 times higher than over the slopes, and 10 times higher than in open-waters. Diel variations in backscatter intensity were more pronounced in open-waters and in Gigante seamount, with higher values during the day in open-waters, and at night over the summits and slopes of Gigante. Over Condor seamount, diel changes in backscatter intensity were small, but MVBS was generally higher at night than during the day, as in Gigante. Persistence of strong acoustic backscatter over the summits of Condor and Gigante seamounts is a key finding of this study and may be explained by the presence of a seamount-associated micronekton community and by the retention of vertically migrating micronekton. The latter hypothesis is consistent with observed day-night differences in backscatter, suggesting that nocturnal migrants may be passively transported or actively swim above seamount summits and slopes. Possible physical mechanisms leading to the observed patterns in micronekton distribution are discussed. This study contributes to a better understanding of how seamounts may influence the spatial and temporal dynamics of micronekton assemblages.

Highlights

  • Sound-scattering layers (SLs) are dense aggregations of planktonic and nektonic organisms that reflect sound in water and can be observed acoustically

  • Through a series of acoustic surveys conducted over a 3year period, this study provides the first comprehensive view of the distribution and temporal dynamics of micronekton at seamounts in the Azores

  • Our work showed that presence of seamounts affected the horizontal distribution of acoustic scatterers, contributing to the formation of persistent higher MVBS in near-surface waters over the summits, which contrasted with lower acoustic density in the water column above the slopes and in the open ocean

Read more

Summary

Introduction

Sound-scattering layers (SLs) are dense aggregations of planktonic and nektonic organisms that reflect sound in water and can be observed acoustically. Scattering layers of micronekton are taxonomically diverse, consisting of small (mostly 2–20 cm long) pelagic crustaceans (adult euphausiids, decapods, and mysids), cephalopods (namely sepiolids, pyroteuthids, and enoploteuthids) and fishes (mainly mesopelagic and juvenile stages of pelagic species) (Barham, 1966; Brodeur and Yamamura, 2005). Extensive diel horizontal migrations between oceanic and slope waters have been documented in some areas (Benoit-Bird and Au, 2006). Micronekton SLs play an important role in the transport of carbon and nutrients between mesopelagic and epipelagic environments (Hudson et al, 2014), and between oceanic and neritic systems (Benoit-Bird and Au, 2004)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call