Abstract

The diel vertical migration (DVM) of zooplankton and the influence of upwelling on zooplankton biomass were examined using water column data of current velocity and mean volume backscattering strength (MVBS) collected by moored acoustic Doppler current profilers (ADCPs) deployed in the southeastern Chukchi Sea during the 5th Chinese National Arctic Research Expedition (CHINARE) in summer 2012, combined with the satellite observational data such as sea surface temperature (SST), wind, and chlorophyll a (Chl a). Hourly acoustic data were continuously collected for 49-d in the mooring site. Spectral analysis indicated that there were different migrating patterns of zooplankton, even though precisely classifying the zooplankton taxa was not available. The prevailing 24-h cycle corresponded to the normal DVM with zooplankton swimming upwards at sunrise and returning to deep waters at sunset. There was a clear DVM in the upper 17 m of the water column during the period with distinct day-night cycles, and no active DVM throughout the water column when the sun above the horizon (polar day), suggesting that light intensity was the trigger for DVM. Also there was a second migrating pattern with 12-h cycle. The upwelling event occurring in the northwest of Alaskan coastal area had important influence on zooplankton biomass at the mooring site. During the upwelling, the SST close to the mooring site dropped significantly from maximal 6.35°C to minimal 1.31°C within five days. Simultaneously, there was a rapid increase in the MVBS and Chl a level, suggesting the aggregation of zooplankton related to upwelling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call