Abstract
Two well-known mechanisms, one-axis twisting (OAT) and two-axis countertwisting (TACT), generate spin-squeezed states dynamically. The latter provides better spin squeezing (SS) but has not been demonstrated as the form of its interaction does not occur naturally in known physical systems. Several proposals for realizing effective TACT transformed from OAT require stringent experimental conditions in order to overcome the resulting nonstationary (oscillating) SS and continuously varying mean spin directions. This work presents a simple scheme that solves both problems by freezing SS at an optimal point and realizing effectively persistent SS by inhibiting further squeezing dynamics. Explicit procedures are outlined for persistent SS of the TACT limit. Protocols based on our scheme favorably relax experimental demands, which significantly brighten the prospects for realizing TACT.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have