Abstract
AbstractThis paper concerns the dynamic stability of the steady three‐dimensional (3‐D) wave structure of a planar normal shock front intersecting perpendicularly to a planar solid wall for unsteady potential flows. The stability problem can be formulated as a free boundary problem of a quasi‐linear hyperbolic equation of second order in a dihedral‐space domain between the shock front and the solid wall. The key difficulty is brought by the edge singularity of the space domain, the intersection curve between the shock front and the solid wall. Different from the two‐dimensional (2‐D) case, for which the singular part of the boundary is only a point, it is a curve for the 3‐D case in this paper. This difference brings new difficulties to the mathematical analysis of the stability problem. A modified partial hodograph transformation is introduced such that the extension technique developed for the 2‐D case can be employed to establish the well‐posed theory for the initial‐boundary value problem of the linearized hyperbolic equation of second order in a dihedral‐space domain. Moreover, the extension technique is improved in this paper such that loss of regularity in the a priori estimates on the shock front does not occur. Thus, the classical nonlinear iteration scheme can be constructed to prove the existence of the solution to the stability problem, which shows the dynamic stability of the steady planar normal shock without applying the Nash–Moser iteration method.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.