Abstract

AbstractShephard groups are common generalizations of Coxeter groups, Artin groups, and graph products of cyclic groups. Their definition is similar to that of a Coxeter group, but generators may have arbitrary order rather than strictly order 2. We extend a well‐known result that Coxeter groups are to a class of Shephard groups that have ‘enough’ finite parabolic subgroups. We also show that in this setting, if the associated Coxeter group is type (FC), then the Shephard group acts properly and cocompactly on a cube complex. As part of our proof of the former result, we introduce a new criteria for a complex made of simplices to be .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.