Abstract

This paper focuses on the persistence of solitary waves and periodic waves of a singularly perturbed generalized Drinfel’d–Sokolov system. Geometric singular perturbation theory is first employed to reduce the higher-dimensional system to the perturbed planar system. By perturbation analysis and Abelian integrals theory, we are then able to find some sufficient conditions about the wave speed to guarantee the existence of homoclinic orbits and periodic orbits, which indicates the existence of solitary waves and periodic waves. Furthermore, we find the lower and upper bounds of the limit wave speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.