Abstract

We study the statistics of simulated earthquakes in a quasistatic model of two parallel heterogeneous faults within a slowly driven elastic tectonic plate. The probability that one fault remains dormant while the other is active for a time Dt following the previous activity shift is proportional to the inverse of Dt to the power 1+x, a result that is robust in the presence of annealed noise and strength weakening. A mean field theory accounts for the observed dependence of the persistence exponent x as a function of heterogeneity and distance between faults. These results continue to hold if the number of competing faults is increased. This is related to the persistence phenomenon discovered in a large variety of systems, which specifies how long a relaxing dynamical system remains in a neighborhood of its initial configuration. Our persistence exponent is found to vary as a function of heterogeneity and distance between faults, thus defining a novel universality class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.