Abstract
The integration of the Internet of Things (IoT) in healthcare has facilitated real-time monitoring of vital signs and environmental conditions. However, existing systems often lack personalized recommendations that consider the interplay between these factors. This work introduces the Personalized Environment Recommendation System (PERS), which leverages a portable device to continuously collect data on key health metrics, including pulse rate and body temperature, alongside environmental parameters. Utilizing Artificial Neural Networks, PERS analyzes the data to generate tailored health recommendations for users. Experimental results demonstrate an accuracy of 98.7%, highlighting the system’s effectiveness in enhancing patient care and supporting informed health decisions. The findings suggest that PERS can significantly improve health monitoring by providing actionable insights based on individual health profiles and environmental contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.