Abstract

Magnetization reversal mechanism and related surface morphology of functional FePt(001) alloy films with large perpendicular magnetic anisotropy have been explored by alternate-atomic-layer deposition onto Pt/MgO(100) substrates via electron beam evaporation, and all evaporated films have been kept at in-situ substrate heating temperature of 400 °C. The FePt alloy film was composed of ultrathin [Fe (0.5 nm)/Pt (0.5 nm)]n Fe/Pt multilayer structures. The corresponding thickness of multilayer films was controlled by the periodic bilayer numbers (n) and varied in the range from 15 nm (n = 15) to 30 nm (n = 30). The surface topography was observed and varied from granular-like island to continuous microstructures with increasing the periodic numbers of Fe/Pt bilayer films. The measurement of angular dependent coercivity showed a tendency of the near rotation of reverse-domain type (n = 15) shift towards the domain-wall motion as a typical peak behavior (n = 30) with increasing the periodic bilayer numbers of Fe/Pt multilayers. On the basis of all magnetic measurements and corresponding magnetization analysis, indicating that the perpendicular magnetization reversal mechanism and related surface morphology of ordered FePt(001) alloy films could be systematically controlled by varying the periodic bilayer numbers accompanied with the thickness dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.