Abstract

The design of novel dual Z-scheme heterojunction plays a significant path in eradicating organic contaminants via enriched charge carrier separation. Herein, a wet chemical method was used to synthesize ternary g-C3N5/BiVO4/CoFe–LDH (CBCF) nanocomposites, and their corresponding abilities were characterized as follows: crystal phases, optical properties, surface morphologies, and compositions. The g-C3N5/BiVO4/CoFe–LDH-30% (CBCF-3) sample optimized the removal efficiency of norfloxacin (NOR) by up to 95.3% through peroxymonosulfate (PMS) activation in a visible light medium. The combined effects from the Vis/PMS/CBCF-3 catalytic system led to 7-times higher degradation efficiency than visible light only system. This improved performance was attributed to the generation of reactive radical species because of higher PMS utilization and an effective Z-charge transfer process from well-oriented band structures. Moreover, scavenging tests and electron spin resonance analysis revealed the production of active radical and non-radical species, namely •OH, SO4•−, •O2−, and 1O2. Based on the appropriate experimental analysis, the expected NOR degradation mechanism and possible pathways were proposed. Then, the toxicity evaluation results revealed that the intermediate products may not have an adverse effect on the aquatic ecosystems. This research study provides a positive outcome for wastewater remediation using enriched dual Z-scheme mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.