Abstract

A fixed-bed column packed with copper oxide pellets (FBC-CuO) combined with peroxydisulfate (PDS) as a primary oxidant was assessed as an option for simultaneously wastewater decontamination (antibiotics) and disinfection (bacteria, viruses, and protozoa). Preliminary to these experiments, phenol was used as the target molecule to investigate the working mode of FBC-CuO under various operating conditions, such as varying flow rates, initial persulfate, and phenol concentrations. Then, the removal of a mix of five representative antibiotics (amoxicillin (AMX), cefalexin (CFX), ofloxacin (OFL), sulfamethoxazole (SMX), and clarithromycin (CLA)) in secondary treated urban wastewater (STWW) was evaluated. AMX, CFX, and OFL were effectively removed by simply flowing through the FBC-CuO, and the addition of PDS (500µM) systematically enhanced the degradation of all targeted antibiotics, which is also the necessary condition for the removal of SMX and CLA. Urban wastewater disinfection was evaluated by monitoring targeted pathogens originally in the STWW. A significant reduction of Escherichia coli, Enterococcus, F-specific RNA bacteriophages was observed after the treatment by FBC-CuO with 500µM PDS. X-ray diffraction measurement and scanning electron microscopy performed on CuO pellets before and after treatment confirmed that the structure of the catalyst was preserved without any phase segregation. Finally, quantification of Cu(II) at the outlet of FBC-CuO indicate a non-negligible but limited released. All these results underline the potential of the FBC-CuO combined with PDS at the field scale for the degradation of micropollutants and inactivation of pathogens in wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call