Abstract

The present work describes the synthesis, structural characterization, and catalytic activity of a Co(II)-based one-dimensional coordination polymer (CP1). To validate the chemotherapeutic potential of CP1, in vitro DNA binding assessment was carried out by employing multispectroscopic techniques. Moreover, the catalytic activity of CP1 was also ascertained during the oxidative conversion of o-phenylenediamine (OPD) to diaminophenazine (DAP) under aerobic conditions. The molecular structure of CP1 was solved with the olex2.solve structure solution program using charge flipping and refined with the olex2.refine refinement package by using Gauss-Newton minimization. The DFT studies were performed by utilizing ORCA Program Version 4.1.1 to calculate the electronic and chemical properties of CP1 by calculating the HOMO-LUMO energy gap. All calculations were carried out at B3LYP hybrid functional using def2-TZVP as the basis set. Contour plots of various FMOs were visualized by using Avogadro software. Hirshfeld surface analysis was carried out by Crystal explorer Program 17.5.27 to examine the various non-covalent interactions which are crucial for the stability of crystal lattice. In addition, molecular docking studies of CP1 with DNA were performed by using AutoDock Vina software and AutoDock tools (version 1.5.6). Discovery studio 3.5 Client 2020 was used for visualization of the docked pose and binding interactions of CP1 with ct-DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.