Abstract
Large-seed-induced regulation significantly impacts perovskite film grain growth; however, it inadequately addresses stress and defect issues at the perovskite interface. To counter this, we introduce an innovative self-disintegrating seed approach, employing 2D (4-FBZA)2PbI4 perovskite to enhance the crystallization process. During perovskite crystal growth, (4-FBZA)2PbI4 could disintegrate and release 4-FBZA+ ions. These ions effectively anchor the perovskite interface and interact with FA+ and [PbI6]4- within the lattice, passivating defects and releasing detrimental stress. This strategy results in reduced nonradiative recombination and residual stress, culminating in perovskite solar cells (PSCs) achieving a champion power conversion efficiency (PCE) of 23.73 % and a remarkable fill factor of 83.64 %. Crucially, unencapsulated PSCs retain over 90 % of their initial PCE following 2000 h of exposure in ambient conditions at 25±5 °C and 60 % relative humidity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.