Abstract

Perovskite solar cells with photoactive layer of methylammonium lead iodide and hole transport layer based on a polyaniline complex with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) have been developed for the first time. The power conversion efficiency of obtained cells is comparable with that of known analogs. Results of simulation of the optical parameters of cells in the framework of the Maxwell–Garnet model showed that the experimentally observed weak dependence of the power conversion efficiency on the perovskite layer thickness within 350–500 nm is related to the absence of significant variation of both the energy absorbed by the photoactive layer and the exciton generation rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call