Abstract

Perovskite oxide nanocrystals exhibit a wide spectrum of attractive properties such as ferroelectricity, piezoelectricity, dielectricity, ferromagnetism, magnetoresistance, and multiferroics. These properties are indispensable for applications in ferroelectric random access memories, multilayer ceramic capacitors, transducers, sensors and actuators, magnetic random access memories, and the potential new types of multiple-state memories and spintronic devices controlled by electric and magnetic fields. In the past two decades, much effort has been made to synthesize and characterize the perovskite oxide nanocrystals. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, perfect crystalline structure, defects, and homogenous stoichiometry of the perovskite oxide nanocrystals. This chapter provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, functionalization, and unique applications of perovskite oxide nanocrystals in nanoelectronics. It begins with the rational synthesis of perovskite oxide nanocrystals, and then summarizes their structural characterizations. Fundamental physical properties of perovskite oxide nanocrystals are also highlighted, and a range of novel applications in nanoelectronics, information storages, and spintronics are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call