Abstract

AbstractHybrid Organic‐Inorganic Halide Perovskites (HOIHPs) represent an emerging class of semiconducting materials, widely employed in a variety of optoelectronic applications. Despite their skyrocket growth in the last decade, a detailed understanding on their structure–property relationships is still missing. In this communication, we report two unprecedented perovskite‐like materials based on polyfluorinated imidazolium cations. The two materials show thermotropic liquid crystalline behavior resulting in the emergence of stable mesophases. The manifold intermolecular F ⋅ ⋅ ⋅ F interactions are shown to be meaningful for the stabilization of both the solid‐ and liquid‐crystalline orders of these perovskite‐like materials. Moreover, the structure of the incorporated imidazolium cation was found to tune the properties of the liquid crystalline phase. Collectively, these results may pave the way for the design of a new class of halide perovskite‐based soft materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.