Abstract
This paper shows the usefulness of Perov's contraction principle, which generalizes Banach's contraction principle to a vector-valued metric, for studying dynamic programming problems in which the discount factor can be stochastic. The discounting condition β<1 is replaced by ρ(B)<1, where B is an appropriate nonnegative matrix and ρ denotes the spectral radius. Blackwell's sufficient condition is also generalized in this setting. Applications to asset pricing and optimal savings are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.