Abstract

Let A and B be nonempty subsets of a metric space. As a non-self mapping T: A → B does not necessarily have a fixed point, it is of considerable interest to find an element x that is as close to Tx as possible. In other words, if the fixed point equation Tx = x has no exact solution, then it is contemplated to find an approximate solution x such that the error d(x, Tx) is minimum. Indeed, best proximity point theorems investigate the existence of such optimal approximate solutions, called best proximity points, of the fixed point equation Tx = x when there is no exact solution. As d(x, Tx) is at least d(A, B), a best proximity point theorem achieves an absolute minimum of the error d(x, Tx) by stipulating an approximate solution x of the fixed point equation Tx = x to satisfy the condition that d(x, Tx) = d(A, B). This article furnishes extensions of Banach's contraction principle to the case of non-self mappings. On account of the preceding argument, the proposed generalizations are formulated as best proximity point theorems for non-self contractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.