Abstract

Given non-void subsets A and B of a metric space and a non-self mapping \({T:A\longrightarrow B}\), the equation T x = x does not necessarily possess a solution. Eventually, it is speculated to find an optimal approximate solution. In other words, if T x = x has no solution, one seeks an element x at which d(x, T x), a gauge for the error involved for an approximate solution, attains its minimum. Indeed, a best proximity point theorem is concerned with the determination of an element x, called a best proximity point of the mapping T, for which d(x, T x) assumes the least possible value d(A, B). By virtue of the fact that d(x, T x) ≥ d(A, B) for all x in A, a best proximity point minimizes the real valued function \({x\longrightarrow d(x, T\,x)}\) globally and absolutely, and therefore a best proximity in essence serves as an ideal optimal approximate solution of the equation T x = x. The aim of this article is to establish a best proximity point theorem for generalized contractions, thereby producing optimal approximate solutions of certain fixed point equations. In addition to exploring the existence of a best proximity point for generalized contractions, an iterative algorithm is also presented to determine such an optimal approximate solution. Further, the best proximity point theorem obtained in this paper generalizes the well-known Banach’s contraction principle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call