Abstract

DNA-Encoded Libraries (DELs) allow the parallel screening of millions of compounds for various applications, including de novo discovery or affinity maturation campaigns. However, library construction and HIT resynthesis can be cumbersome, especially when library members present an unknown stereochemistry. We introduce a permutational encoding strategy suitable for the construction of highly pure single-stranded single-pharmacophore DELs, designed to distinguish isomers at the sequencing level (e.g., stereoisomers, regio-isomers, and peptide sequences). This approach was validated by synthesizing a mock 921,600-member 4-amino-proline single-stranded DEL ("DEL1"). While screening DEL1 against different targets, high-throughput sequencing results showed selective enrichment of the most potent stereoisomers, with enrichment factors that outperform conventional encoding strategies. The versatility of our methodology was additionally validated by encoding 24 scaffolds derived from different permutations of the amino acid sequence of a previously described cyclic peptide targeting Fibroblast Activation Protein (FAP-2286). The resulting library ("DEL2") was interrogated against human FAP, showing selective enrichment of five cyclic peptides. We observed a direct correlation between enrichment factors and on-DNA binding affinities. The presented encoding methodology accelerates drug discovery by facilitating library synthesis and streamlining HIT resynthesis while enhancing enrichment factors at the DEL sequencing level. This facilitates the identification of HIT candidates prior to medicinal chemistry and affinity maturation campaigns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call