Abstract

Permselectivity of a membrane is central for the development of electrochemical energy storage devices with two redox couples, such as redox flow batteries (RFBs). In RFBs, Br3-/Br- couple is often used as a catholyte which can cross over to the anolyte, limiting the battery's lifetime. Naturally, the development of permselective membranes is essential to the success of RFBs since state-of-the-art perfluorosulfonic acid (PFSA) is too costly. This study investigates membranes of graphene oxide (GO), polyvinylpyrrolidone (PVP), and imidazole (Im) as binder and linker, respectively. The GO membranes are compared to a standard PFSA membrane in terms of ionic conductivity (Na+) and permselectivity (exclusion of Br-). The ionic conduction is evaluated from electrochemical impedance spectroscopy and the permselectivity from two-compartment diffusion cells in a four-electrode system. Our findings suggest that the GO membranes reach conductivity and permselectivity comparable with standard PFSA membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.