Abstract

With the development of 5G technology, the accurate measurement of the complex permittivity of a printed circuit board (PCB) in the wide frequency range is crucial for the design of high-frequency circuits. In this paper, a microwave measurement device and method based on the double-sided parallel-strip line (DSPSL) resonator have been developed to measure the complex permittivity of typical PCBs in the vertical direction. The device includes the DSPSL resonator, the DSPSL coupling probe, a pressure monitor, a Farran C4209 vector network analyzer (100 K to 9 GHz), and a FEV-10-PR-0006 frequency multiplier (75–110 GHz). Based on transmission line theory, the physical model of the DSPSL resonator was established, and the relative permittivity and loss angle tangent value of the dielectric substrate were calculated using conformal transformation. To excite the resonator, the DSPSL coupling probe with a good transmission effect was designed, which consists of DSPSL microstrip line (MSL) transition structure and an MSL-WR10 rectangular waveguide converter. To reduce the air gap between the sample and the metal guide band and dielectric support block, and to improve test accuracy, a mechanical pressure device is added to the top of the DSPSL resonator. Based on the DSPSL resonator, we have used the device to test four typical PCBs, namely, polytetrafluoroethylene, Rogers RT/duroid®5880, Rogers RO3006®, and Rogers RO3010®. The results show that the maximum error of the relative permittivity is less than 3.05%, and the maximum error of the loss angle tangent is less than 1.27 × 10−4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.