Abstract
The electrical field-induced changes of the yeast Saccharomyces cerevisiae cells permeabilization to tetraphenylphosphonium (TPP+) ions were studied using square-shaped, nanosecond duration high power electrical pulses. It was obtained that pulses having durations ranging from 10 ns to 60 ns, and generating electric field strengths up to 190 kV/cm significantly (up to 65 times) increase the absorption rate of TPP+ ions without any detectible influence on the yeast cell viability. The modelling of the TPP+ absorption process using a second order rate equation demonstrates that depending on the duration of the pulses, yeast cell clusters of different sizes are homogeniously permeabilized. It was concluded, that nanosecond pulse-induced permeabilization can be applied to increase the operational speed of whole cell biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.