Abstract
This paper examines an integrated approach to study the permeability alteration resulting from nanofluid flow through porous media. Hydrophilic nanostructure particles (NSPs) are dispersed in the brine stream at 0.05, 0.2, and 0.5 wt % concentrations and injected into several oil-wet Berea sandstones. The pressure drops across the cores and the effluent nanoparticle concentrations are monitored. To quantify the nanoparticle adsorption/detachment and straining behavior and associated effects on formation permeability, analytical mechanistic models are derived using the method of characteristics. The interplay between nanoparticles and rocks is described by the classical particle filtration theory coupled with the maximum adsorption concentration model. All of the necessary parameters, e.g., the maximum adsorption concentrations, reversible or detachment adsorption concentrations, nanoparticle adsorption and straining rates, and corresponding formation damage coefficients, are characterized. The experimenta...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have