Abstract

The D3Q27 lattice Boltzmann method (LBM) combined with the fluid-structure boundary reconstruction (fsBR) scheme and the interpolated bounce back (IPBB) method is extensively evaluated to predict the permeability of nonwoven fibrous porous media. The fsBR-IPBB method transfers digitally defined step-like boundary data, e.g. the three-dimensional structure data obtained by the X-ray computed tomography, to continuous smooth boundary data via level-set functions. It leads to highly accurate calculations despite low lattice resolutions of thin fibers with circular cross-sectional shapes, compared to the conventional half-way bounce back (HWBB) method. The fsBR-IPBB method is first applied to predict the permeability of two different arrays of impermeable circular cylinders and verified by comparing the results with the data in the literature. We then validate the method referring to the numerically and experimentally obtained permeability of six types of nonwoven fabrics prepared by the industrial hydroentanglement process. Finally, the discussion on the applicability and the limitation of the macroscopic correlation models to estimate permeability of porous media is carried out. The results show that although the calculated permeability is in reasonable agreement with the measured one with an error of 8.1–16.3%, analytical or empirical correlation models fail to give the correct trend due to the highly inhomogeneous and anisotropic properties of hydroentangled nonwoven fabrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.