Abstract
In this paper, fluid transport through fibrous porous media is studied by the fractal theory with a focus on the effect of surface roughness of capillaries. A fractal model for Kozeny–Carman (KC) constant and dimensionless permeability of fibrous porous media with roughened surfaces is derived. The determined KC constant and dimensionless permeability of fibrous porous media with roughened surfaces are in good agreement with available experimental data and existing models reported in the literature. It is found that the KC constant of fibrous porous media with roughened surfaces increases with the increase of relative roughness, porosity, area fractal dimension of pore and tortuosity fractal dimension, respectively. Besides, it is seen that the dimensionless permeability of fibrous porous media with roughened surfaces decreases with increasing relative roughness and tortuosity fractal dimension. However, it is observed that the dimensionless permeability of fibrous porous media with roughened surfaces increases with porosity. With the proposed fractal model, the physical mechanisms of fluids transport through fibrous porous media are better elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.