Abstract
In order to characterize the permeability of the oral epithelial layers in cnidarians, we investigated the kinetics of transport of labelled ions (45Ca,22Na,36Cl) and organic molecules (14C-inulin-carboxyl,14C-ala) through the oral tissue of two cnidarian species,Anemonia viridis (Forsskal, 1775) andHeliofungia actiniformis (Quoy and Gaimard, 1833) using the Ussing chamber method. In both species, unidirectional Ca, Na and Cl fluxes were the same in both directions (ectoderm towards endoderm and vice versa), the net flux being equal to zero. The insensitivity of these unidirectional transepithelial fluxes to metabolic inhibitor (1 mM sodium cyanide) and calcium channel inhibitor (100 μM verapamil) and their linear dependence on calcium concentration suggest that these fluxes are simple driven by diffusion via a paracellular pathway. The epithelial layers were not permeable to inulin. Low-molecular weight amino acids such as alanine did not cross the epithelia but were absorbed by the ectoderm. The permeability coefficients indicate that the oral epithelial layers are leaky. It is suggested that the coelenteric cavity represents a compartment in which the ionic pool can be entirely renewed by simple diffusion. This process seems efficient enough to meet all calcium requirements in scleractinian corals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have