Abstract

Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine bilayers (8-fold), and the linear relationship between in f and sigma established for liquid-crystalline bilayers was no longer followed. However, in both gel and liquid-crystalline phases in f was found to exhibit an inverse correlation with free surface area (in f = -0.31 - 29.1/af, where af is the average free area (in square angstroms) per lipid molecule). Thus, the lipid bilayer permeability of acetic acid can be predicted from the relevant chain-packing properties in the bilayer (free surface area), regardless of whether chain ordering is varied by changes in temperature, lipid chain length, cholesterol concentration, or bilayer phase structure, provided that temperature effects on permeant dehydration and diffusion and the chain-length effects on bilayer barrier thickness are properly taken into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.