Abstract
It is widely accepted in the oil and gas industry that high-ionic-strength water (HISW) can improve oil and gas recovery in unconventional shale reservoirs by limiting shale hydration. Despite numerous supporting studies, there is a lack of a systematic analysis exploring the effect of HISW on shale permeability evolution, particularly considering varying chemical compositions. In this work, we investigated the impact of different concentrations of NaCl and CaCl2 on shale permeability through sequential HISW imbibition experiments, beginning with the highest NaCl and lowest CaCl2 concentrations. After maintaining the highest effective stress for an extended period, significant permeability reduction and potential fracture generation were observed, as indicated by periodic fluctuations in differential pressure. These effects were further intensified by displacements with HISW solutions. Advanced post-experimental analyses using micro-CT scans and SEM-EDS analysis revealed microstructural changes within the sample. Our findings offer initial insight into how HISW-shale interactions influence shale permeability, using innovative approaches to simulate reservoir conditions. The findings indicate that discrepancies in the chemical composition between injected solutions and shale may lead to shale disintegration during hydraulic fracturing processes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have